
Chapter X 

Waves and Metallic boundary Conditions 

A new technology has arisen in the last few decades that is based on the 
use of electromagnetic waves in the neighborhood of 10 cm wavelength. 
Many of the practical devices in use depend on the behavior of these waves 
when bounded by conducting surfaces. For example, the waves are 
generated in resonant cavities and directed to and from antennas in 
waveguides. 

In this chapter we will discuss the basic principles of these devices 
and some of the easiest examples, but we will not develop the practical 
applications. The subjects emphasized are the boundary conditions 
imposed by good conductors; modes of radiation propagating between 
mirrors, propagating inside a waveguide of constant cross section, 
and standing in a resonant cavity; and the calculation of energy loss. 

33. WAVEGUIDES AND RESONANT CAVITIES 

Wave Propagation in Good Conductors 

Preliminary to the discussion of metallic boundary conditions will be 
the consideration of how waves propagate inside conductors. The 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

answer is "poorly," of course, but one needs to know the answer 
quantitatively in order to describe the reflection and loss that occur 
at the surface of a metal. Maxwell's equations, as they apply in the 
interior of a conductor with J = σΕ, B = μΗ, and D = eE, are 

Traveling wave 
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be found 

(33.1) 

in the form 

(33.2) 

where k is in general complex, but k is a real unit vector. All but the 
second of Maxwell's equations are satisfied if 

k · E0 = 0, 
(33.3) 

B0 = — k X E0 . 
CO 

Then the dispersion results from using these fields in the second 
Maxwell equation: 

IC € 47Γ — k X (k X E0) + ίω - E 0 = — σΕ0, 
ωμ C C 

_,· -£- k2 + iœ - = — σ, (33.4) 
ωμ C C 

For a good conductor, by definition, 4πσ/ωβ is large compared to unity 
and 

A* = i4m7^-. (33.5) 

Neglecting €μω2/ε2 in Eq. (33.4) is the same as neglecting the displacement 
current c_1 dD/dt in Maxwell's equations. A good conductor is therefore 
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X . WAVES AND METALLIC BOUNDARY CONDITIONS 

one in which the conduction current is larger than the displacement 
current; of course this depends on the frequency of the wave. Thus for 
a good conductor k is complex and given by 

k^~vT^~^~~ ' (33,6) 

The wave is attenuated with distance according to the factor 

pikk'X __ ρΐν2πσωμ/ο2 k»x ρ—^2πσωμ/ΰ2 £·χ (33.7) 

This means that the transmitted part of a wave impinging on the surface 
of a good conductor is damped exponentially as it propagates into the 
metal» The distance characteristic of the attenuation is 

S = 77T—-' ( 3 3 · 8 ) 

V Ιττσωμ 

which is known as the skin depth. The skin depth of a good conductor is 
small compared to a wavelength of the free radiation since 

λ V 2πσωμ Ine 

= Τ Λ Μ Ξ Γ Λ / 2 ^ Γ · ( 3 3 · 9 ) 

The wave dies off to zero on a scale short compared to its wavelength 
outside the metal but on the same scale as its wavelength inside. 

Zero-Order Surface Effects 

In most problems it is both difficult and unnecessary to treat the 
phenomena that occur in the surface exactly. Instead, there is a general 
analysis of surface effects that can be made, for a good conductor, which 
leads to boundary conditions that determine the fields outside and 
leads to a recipe for calculating the losses due to penetration of the 
fields into the conductor. The surface effects will be studied in two 
stages of approximation. 

The zero-order approximation is to suppose that there is an effective 
surface charge density σ and a surface current K (charge per second, 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

per unit length transverse to the flow) on the metal. The boundary 
conditions are then obtained by integrating Maxwell's equations over 
small pill boxes or closed circuits straddling the boundary as shown in 
Fig. 33.1. For the normal component of D, one integrates over the 

FIG* 33*1. Geometry for obtaining boundary conditions from Maxwell's equations. 
Here ή is the unit normal out of the metal and t is a unit tangential vector. 

pillbox using Gauss's theorem: 

V · D = 4πρ, 
(Dout-Din) · η = 4τ7σ, (33.10) 

D · ή = 4πσ 

in the limit as the dimensions of the pillbox shrink to zero. In the last 
line, D is the field just outside; the fields inside the conductor are being 
ignored in this approximation. Also, the pillbox thickness is supposed 
to be large compared to δ, and the effect of the fields inside is supposed 
to be summarized by σ and K. The same reasoning applied to the 
equation V · B = 0 shows that 

(Bout — Bin) " n = 0, 
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X . WAVES AND METALLIC BOUNDARY CONDITIONS 

where B is the field just outside the conductor. For the tangential 
component of H one considers the equation 

* * H ^ ' + ï f < 3 3 1 2 > 
integrated over the area of a closed path that straddles the boundary 
as shown in Fig. 33.1. The size of the path parallel to the surface is /, 
and the size normal to the surface is negligible. If t is the normal to 
the circuit in the right-hand sense, then application of Stokes's theorem 
shows that 

J, Je^a 

- H m ) 

• V X H = 

j H · dl = 

• (t X ή) = 

47Γ 

c 
4ττ 
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κ 

•U, 

t, 
(33.13) 

(Hou 

[ή X (Hout - Hm)] - t = ^ K - t 

applies in the limit of small /. The integral of c_1 dD/dt over the area of 
the circuit is proportional to the area of the circuit instead of to its 
length and does not contribute in this limit. Thus once again the 
displacement current is negligible in the effects due to a good conductor. 
Both of the vectors contracted with t in Eqs. (33.13) lie in the surface, 
and since t can be in any direction in the plane of the boundary, one 
must conclude that 

4π 
n X (Hout — Hin) = K, 

(33.14) 
ATT 

c 
where in the last equation H is the field just outside the metal. Thus 
the tangential component of H gives the surface current per unit length. 
The last condition in the zero-order approximation comes from the 
equation 

V X E = - i f , (33.15) 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

and leads, by the same sort of argument, to 

n X E = 0, (33.16) 

where E is the field just outside. In summary, the boundary conditions 
that one should use are that E is normal to the surface and B is tangential. 
These boundary conditions are sufficient to solve many waveguide 
problems. Once a problem is solved, the normal component of D and 
the tangential component of H determine the surface charge and current. 

First-Order Surface Effects 

The next approximation deals with the way that the fields make 
the change from their values outside to zero inside the conductor. 
This leads to an understanding of losses in waveguides and cavities; 
it turns out that the loss per unit area can be expressed in terms of H „ , 
the field just outside. LetEc(x, t) and Hc(x, t) be the fields in the interior 
of the conductor. The time dependence of these fields is contained in the 
factor e~ia)t. For a good conductor, the displacement current in Maxwell's 
equations may be neglected and so 

V x E c - ^ H c = 0, 
(33.17) 

V X H C = — a E c . c 

The key to understanding the surface effects is to know that the fields 
inside the conductor vary more rapidly in the direction normal to the 
surface than in the directions parallel to the surface. The variation 
normal is on the scale of the skin depth whereas the variation parallel 
is on the scale of the wavelength outside the metal, since the boundary 
conditions have to be satisfied over the entire surface. The ratio is small 
for a good conductor, as shown by Eq. (33.9). Therefore, it makes sense 
to let 

V = - n ^ , (33.18) 

when acting on the internal fields, where ξ is the coordinate along the 
normal into the metal. This holds in some degree of approximation 
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X . WAVES AND METALLIC BOUNDARY CONDITIONS 

measured by δ/λ and depending on details of the conductor geometry. 
In this case Eqs. (33.17) become 

Hc = 

Ec = 

ic A dEc 
n X —TT- > 

μω Οξ 

c Λ ^ aHc 
-Λ—n X -p-r-

(33.19) 

According to the first equation H c · n = 0, so that H 0 is parallel to 
the boundary surface in this approximation. Eliminating E c results in 

« ic - ~ I c \i~ ~ g2Hc\ 
Hc = ^ n X ( - 4 ^ - ) ( n X ^ F " ) 

IC* a2H c 
4πμωσ 8ξ2 

iδ2 a 2 H c m ™ 
= t~2~d^· ( 3 1 2 0 ) 

The solution of this equation that decreases into the material is given by 

Hc = H„ éH1-^/0 (33.21) 
since (—1 + z)2 is just —z'2. We have taken the initial value of the 
solution to be H,, because the internal fields are treated explicitly. 
Then there is no surface current so we have 

n X (Hout - Hln) = 0, (33.22) 

and the value H c at ξ = 0 becomes H a , the tangential field just 
outside the conductor. The result is that, in this approximation, the 
fields in the metal are given by 

Hc = H„ *-<!--<>«/«, 

Ee^-^nxf-^^jH,,^™ 
Ι_μω_ 

V δττσ 
μω (1 - f ) n X H„ e-"-«*/«. (33.23) 

It should be noted that the electric field inside the conductor is much 
smaller in magnitude than the magnetic field because ω/σ is small 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

for a good conductor. This gives the details of the surface current since 
J = σΕ0 . The losses in the walls of the conductor may be calculated 
by evaluating the Poynting vector just outside the metal. The power 
loss per unit area (the flux of free energy) is the time average of the 
component of the Poynting vector directed into the metal and is given by 

^ = - -^ Re(Eout X H*ut) ' ft. (33.24) 

Only the tangential components of the fields contribute in this expression. 
The tangential component of E is continuous so, in the present approxi­
mation, 

Etan out = Etan in 

Ec] ξ=0 

^ ( l - i J f t X H , . (33.25) 

The tangential component of H just outside the surface is H „ so the 
loss per unit area is 

dP _ c μω 
^ = - ^ V - ^ R e { ( 1 - / ) [ ( A x H » ) X H i ] ' 0 } 

= -eVi^R e { ( 1 - i ) [ 0 ( H»'H i ) - 0 ] } 
μωο 
I6r H„ Hf. (33.26) 

To solve a practical waveguide problem, one uses the boundary condi­
tions B n o r m = E t a n = 0 to find the fields between the conducting 
surfaces. Then the losses can be calculated from Eq. (33.26) from 
the value of H „ . The energy that is lost goes into PR heating in the walls. 

Propagation between Two Mirrors 

Some of the physical properties of waveguides appear already in 
the simpler problem of propagation of light between two mirrors. 
Consider two plane mirrors located at x = 0 and x = L with propagation 
in the XF-plane as shown in Fig. 33.2. The propagation takes place 
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X . WAVES AND METALLIC BOUNDARY CONDITIONS 

FIG» 33*2* Propagation between two mirrors. 

mainly in the F-direction and the light merely reflects back and forth 
in the X-direction. For light of wavelength λ = 2n/k the figure shows 
that there are two wave vectors having components (±k cos a, k sin a, 0) 
that should be considered. Here ex is the angle of incidence or reflection 
at the mirrors. The space-time dependence of the fields associated with 
these waves are of the form βί{±ΙΰΧ(ίΟ80ί+Ιΰί/βίη'χ~ω1) where ω is just ck. 
The two waves must superimpose in such a way that the boundary 
conditions 

£v(0, 0 = 0, 
£.(0, 0 = 0, (33.27) 
5,(0, o = o 

are satisfied. Like boundary conditions apply at x = L. Waves that 
satisfy Eqs. (33.27) will be expressible as vector amplitudes times the 
space and time dependence 

gi(kxC08a+Jcyslll(x—œt) gi(—kxC08ot+ky8lTla—cot) __ / 9 silifkx COS 0i\ £*(&VSina—ωί) 

(33.28) 

The ^-dependence here is that of a standing wave, and the solutions 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

propagate (possibly with attenuation) in the Indirection. The wave 
must also vanish at x = L for any value of y so 

kL cos a = mr, (33.29) 

where n is any positive integer. The different types of fields that result 
for different values of n are called different modes of the system. The 
angle of incidence and reflection oc is determined by 

c2(k cos a)2 + c2(k sin a))2 = c2k2
f 

I ——I + (ω sin οί)Δ = aA 
(33.30) 

This equation permits a to be either real or purely imaginary. When a 
is real, sin a is also real, and the wave propagates in the y-direction. 
On the other hand if a is purely imaginary, so is sin a, and the wave is 
attenuated in the y-direction. It is seen that a is real (or purely imaginary) 
when ω is greater (or less) than nnc/L. Thus the various modes have 
different cutoff frequencies as shown in Fig. 33.3. 

The outstanding feature of propagation between mirrors is that there 
are modes, associated with the positive integers, and that each mode has 
a cutoff frequency below which energy cannot be transmitted. The 

irc/L 2wc/L Zirc/L 

FIG. 33*3. Modes of propagation between two mirrors. 



X . WAVES AND METALLIC BOUNDARY CONDITIONS 

standing waves in the X-direction are observable, even at light frequen­
cies. The observation can be made by inserting a photographic plate 
at a small angle to the mirrors. The maxima and minima of the fields 
along the perpendicular to the mirrors are then observably separated 
as fringes on the developed plate. These are known as Lippmann fringes. 
The dependence on y and t of the wave is contained in the exponential 
factor ei(k'y~œt\ where k' is k sin a. This can be thought of as a wave 
solution of a one-dimensional equation. The phase velocity is then 

ω 
V1> = 1T = p k' k sin ÖL 

(33.31) 

sin ot 

Thus the phase velocity at propagating frequencies is always greater 
than the speed of light and at cutoff it even becomes infinite. The 
dispersion equation in this equivalent one-dimensional problem is 

ω2 = cW* + ( ^ ) 2 . (33.32) 

The group velocity is obtained as usual by differentiating the dispersion 
equation 

ω dix) = C2k' dk', 

ω dœ 
k' dk' = c2, (33.33) 

Thus the group velocity at propagating frequencies is always less than c, 
and at cutoff it vanishes. Energy ceases to be propagated in a mode at 
its cutoff frequency. 

General Theory for Propagation in a Guide 
of Uniform Cross Section 

A very convenient formulation can be developed for the general 
waveguide problem: Find solutions of Maxwell's equations in case 
the conductor containing the fields has translational symmetry along an 
axis. An example is sketched in Fig. 33.4. 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

FIG» 33A* Waveguide with uniform cross section. 

Let the Z-axis be this symmetry axis so that the interior of the guide 
has the same cross section in any plane parallel to the XY-plane. Suppose 
that the interior of the guide is filled with a material which has uniform 
dielectric constant e and permeability μ,, although in most practical 
cases these are just unity. There are no charges or currents inside the 
waveguide so Maxwell's equations become 

V x E c 

V x B + i ^ E 0, (33.34) 

V · B = 0, 
V · E = 0, 

for time dependence e~ioii. Solutions are sought such that the tangential 
component of E and the normal component of B vanish at the walls of 
the guide. 

Because of the translational symmetry of the problem, it is useful 
to set up a decomposition into components along and perpendicular 
to the Z-axis called the transverse and longitudinal parts, say 

E = Ei + Etr, 
B = Bi + Btr , 
V = Vtr + Vi. 

(32.35) 
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X . WAVES AND METALLIC BOUNDARY CONDITIONS 

Here, the longitudinal part of the electric field, for example, is defined by 

Ei = (13 · E)î8, (33.36) 

and its transverse part can be expressed as 

Etr = E — Ei 
= E - î3(î3 · E) 
= - î 3 X (î3 X E). (33.37) 

Similar formulas apply for B and V. For any two vectors or operators 
v and w decomposed this way one has 

Vi · Wtr = 0, 
(33.38) 

vi X wi = 0. 

Furthermore v t r X w t r is longitudinal and v t r X Wj is transverse. The 
cross product v X w can be decomposed as 

V X W = (vi + Vtr) X (Wi + Wtr) 

= Vi X Wtr + Vtr X Wi + Vtr X Wtr , 

so that 
(v X w)tr = Vi X Wtr + Vtr X Wi , 

(33.39) 
(V X w)i = Vtr X Wtr . 

Decomposing Maxwell's equations into transverse and longitudinal 
parts, one finds 

Vtr x E t r - i — Bi = 0, c 

V t r x B t r + i i ^ E i = 0 
(33.40) 

for the longitudinal parts of the curl equations and 

Vtr X Ei + Vi X Etr - ί — B t r = 0, 
c 

Vt r Χ Β ι + ν , χ Btr + i - ^ E t r = 0 

(33.41) 
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3 3 . WAVEGUIDES AND RESONANT CAVITIES 

for their transverse parts. The divergence equations relate scalars and are 
simply 

Vtr ' B t r + Vi · Bi = 0, 
(33.42) 

Vtr · Etr + Vi · Ei = 0. 

The problem is to solve these six equations. 
The second of Eqs. (33.41) will be used to eliminate E t r in the other 

equations. If the other field quantités are known it may be found from 

ic 
Et r = (Vtr X Bi + V! x Btr). (33.43) 

ωμβ 

When this is substituted into the first of Eqs. (33.40), and Vtr · B t r = 
— Vj · Bj is used, an equation in Bj alone results, 

Bi = - / — V t r X E t r ω 

[Vtr X (Vtr X Bi) + Vtr X (Vi X Btr)] 
o)2/xe 

= -4~ [-VÎrBi + V!(Vtr · Btr)] 

= - - £ - [VtrB! + V!(Vi · Bi)]. (33.44) 

When E t r is eliminated from the transverse part of the first curl equation, 
the result is 

Btr = -i — (Vtr X Ei + Vi X Etr) 
co 

2 

= -i — Vtr X Ei + -^— [Vi X (Vtr X Bi) + Vi X (Vi X Btr)] 

= - / - V t r X Ei + - £ - [Vtr(Vi · Bi) - VfBtr]. (33.45) 
ω ωΔμ€ 

Thus far, the system of equations that must be solved has been reduced 
to 

Bi = - -4- [v?rBi + Vi(Vi · Bi)], 
ωΔμ€ 

c (33.46) 
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Btr = - I — Vtr X Ei + ~ [Vtr(V! - Bi) - VfBtr], 
ω ατμ,ε 

Vi · Bi + Vtr · Btr = 0, 

Vi · Ei + Vtr · Etr - 0, 

where it is unders tood that E t r is given by Eq. (33.43). 
T h e type of solution needed is one in which the fields have their 

^ -dependence contained in the exponential factor e±ikz
y corresponding to 

propagation along the axis of the waveguide. Therefore , assuming the 
fields are of the form 

E(x, t) = E0(x,y) ei{±kz~wt)
y 

(33.47) 
B(x, t) = B0(x,y) ei{±kz~^\ 

it follows that , for the longitudinal part of the gradient operator, 

Vi = î3(î3 · V) 

Λ d 

ÖZ (33.48) 
= ±*î3 > 

vf = -k\ 
T h i s brings the system of equations to be solved into the form 

,2,! 
(vfc - A» + ^ ) *. = 0, 

Btr = 

Vtr X Btr + « - ^ Ei = 0, (33.49) 

1 / 3BZ . μ€ω 

fr-») ("î-^'.«4 
with E t P still given by Eq. (33.43). T h e divergencelessness of B is 
guaranteed by this set of equat ions since the first and thi rd of t hem 
lead to 

1 r)R 
Vtr · Btr + Vi · Bi = r V?r — ^ + Vi · Bi 

= 0. (33.50) 
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The divergence of E is also guaranteed to be zero as will be shown 
presently. 

The transverse component of E can be rewritten, using the expression 
for B t r of Eqs. (33.49) in Eq. (33.43), as 

ic 
V ÌC X7 y P | ω^€ 
Ütr = v t r X *>1 + ö ωμε in**.** 

X [Vi X Vtr - ^ - - i^ψ- Vi X (Vtr X Ei)]· (33.51) 

Now since V, dBJdz = Vj(V; · Bj) = — A2Bj, this becomes 

w ■» 

Et r - £ Vtr X Bi + ^ _ v t r X B l + ^ - _ vtr(Vi · Ei) 

On the other hand, the second and third of Eqs. (33.49) lead to an 
equation in Έγ alone: 

E i = î — V t r X Btr 
ω/xe 

. c 1 
ωμ€ '»£"& 

( i ^ - * . ) E i = - V £ E i . 

[-^Vtrx(VtrxEi)], 

(33.53) 

( v ? r - ^ + ^ ) E i = 0. 

This, together with Eq. (33.52), implies that the divergence of E vanishes; 
the proof is the same as that for the divergence of B . Thus the full 
content of Maxwell's equations, provided that the ^-dependence of the 
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solutions is contained in the factor e±ikz, is contained in the following 
system of equations: 

1 / „ dE, 
i t r = « · , 2 

K? + «7'·^.), 

Bt 1 / „ SB 

με ^ r - Ä 2 

/ „ OB, . ω „ Α „ \ 

(33.54) 

The boundary conditions that must be imposed on solutions of this 
system are that the tangential component of E and the normal component 
of B must vanish on the walls of the guide. The axis of the waveguide is 
the Z-direction so one of the components of E t a n is just Ez. Hence 

Ez = 0 on the boundary, (33.55) 

partly specifies the problem. It will be shown later that this is all that 
is needed for the electric field because Efcan = isEz holds on the surface 
as long as the boundary condition on B is satisfied. The normal compo­
nent of B is contained in 

Btr = 1 (±ikVtTBz + ίμ€ — ί3 X Vtr£2), (33.56) 

where dBJdz has been written as ±ïkBz. Since Eg vanishes on the 
surface, VtP2?e is normal there and hence î3 X Vtr£"0 is tangential at 
the boundary. Thus the second term in Eq. (33.56) does not contribute 
to the normal component of B at the wall and so the boundary condition 
that must be satisfied by B is 

n · Btr = - — ί (±*)(n · Vtr)Bz 

= 0 on the boundary. (33.57) 
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That is, dBJdn must vanish on the walls of the waveguide. There are 
two boundary value problems to be solved here. It is interesting that 
the one for Ez is of the Dirichlet type while that for Bz has the 
Neumann form. In principle the specification of the boundary con­
ditions is yet incomplete, for E t r might conceivably have a component 
tangential to the wall. To see that this is not so, one looks at Eqs. (33.54) 
for E t r and first notes that 

V t r ^ = ±ikVtrEz (33.58) 

is normal at the surface because Ez vanishes over the surface. The other 
term in the expression for E t r in terms of Ez and Bz in Eqs. (33.54) does 
not contribute to E t a n either because 

n X (Vtr X Bi) = Vtr(n · Bi) - (n · Vtr)Bi 

= 0 on the boundary. (33.59) 

Thus Vtr X Bj is normal at the surface and it follows that E t r is also 
normal there. The boundary conditions are therefore completely satisfied 
when Ee and dBJdn vanish at the surface. 

Since the system is linear, one can pick either Ez or Bz to be identically 
zero and find solutions of the remaining nontrivial boundary value 
problem. The general problem is then solved by a superposition of 
these two types of solution. The two different types usually have different 
dispersions anyway and so it is better to solve them separately. The 
solutions found when Bz is set equal to zero are called TM modes since 
the magnetic field is then purely transverse. The Dirichlet boundary 
value problem, 

(33.60) 
Ez = 0 on the boundary, 

must be solved for the T M modes for a given geometry of the waveguide. 
There will be solutions only for special values of (/zea>2/c2) — k2. These 
eigenvalues depend on two numbers, since the boundary value problem 
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is two-dimensional, and so the dispersion of the T M modes is of the 
form 

ω^ ,9. 2 
μ € - - ^ = γ^ηί (33.61) 

wjiere m and n are the serial numbers and y^n are the characteristic 
values. The cutoff frequencies of these modes are given by 

Q 

*= Vmn · (33.62) w r a n / 
V/ze 

Once Ez is determined as an eigenfunction corresponding to the eigen­
value y^n , the transverse fields can be constructed from 

F - l V dE' 

r mn 

= ± -£- Vtr£2 , 
y 

1 ω ( 3 3 , 6 3 ) 

B t r = -o— ίμ* — î3 X Vtr^« 

= ± /A€ ^r 13 X btr · 

On the other hand, when one takes Ez to be zero the electric field 
is purely transverse and the propagation is said to be in TE modes. 
The Neumann boundary value problem, 

(33.64) 
0 on the boundary, 

dn 

specifies the TE modes for a particular waveguide geometry. Again 
there will be eigenvalues of the problem giving the dispersion for these 
modes 

μ€--& = γΙη. (33.65) 
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When the eigenfunction solution for Bz corresponding to the eigenvalue 
ymn is determined, the transverse fields can be found easily from 

R - 1 V dB* 

= ±-¥-Vtrß2) 
y 
' r an 

Etr = - 2 - ( - i y î 3 X V * Ä ) 
(33.66) 

= ^ î 3 x B t r . 

This completes the formulation of the theory for propagation in a 
waveguide of uniform cross section. It has been shown that there are 
two types of solutions and the boundary value problems for determining 
these T M and T E modes have been set up. 

Modes in a Rectangular Guide 

The rectangular guide is a mathematically convenient and practically 
relevant special case of the waveguide with uniform cross section. 
Suppose that the walls of the waveguide are conducting planes located 
at x = 0, x = a and at y = 0, y = b as shown in Fig. 33.5. 

l·-

FIG* 33.5* The rectangular waveguide. 
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The T M modes are determined by the Dirichlet problem 

id2 d2 \ 

(33.67) 
Ez = 0 on the boundary. 

This boundary value problem is easily solved by the method of separation 
of variables. One first separates the x- and j-dependence in the differen­
tial equation by assuming a solution of the form 

Ez(x, t) = X(x) Y{y) e**k*-*<»K (33.68) 

The equation becomes 

Y d2X d2Y 
dx2 dy2 

(33.69) 
X" V" 

ΊΓ + ^ + *2 = °-
Since X"\X is a function of x alone and Y"\ y is a function of y alone, 
each must equal a constant if the sum of them is constant. Thus X"\X 
is some number, say —a2, and the solution must be 

X(x) = A sin ocx. (33.70) 

Since Ez must vanish at x = 0, the cosine solution of the differential 
equation has been discarded at this point. Furthermore Ez must also 
vanish at x = a so 

oca = rrm\ m = 1,2, 3,... . (33.71) 

With oc thus established, the differential equation for Y and its solution 
are determined to be 

Y" + (γ2 - OL2)Y = 0, 
(33.72) 

Y(y) = A' sin Vy2 -oc2y. 

The solution that vanishes at y = 0 has been selected here. It must 
also vanish at y = b so 

v y _ a2 b = ηπ. « = 1, 2, 3,... . (33.73) 
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This determines the eigenvalue ymn as a function of the two integers 
m and n. Thus the solution of the eigenvalue problem, with the product 
of constants A A' replaced by a single constant E0 , is 

x v Ez = E0 sin πνπ - sin ηπ \ e±ikz-i(»\ a b 
(33.74) 

Ymn = y-j-J + [——) ; i», n = 1, 2, 3,... . 

Here m and n range independently over the positive integers, zero not 
permitted, and each pair specifies a possible T M mode in the waveguide. 
The transverse components of the fields in the T M modes of the 
rectangular guide are 

_ , A ^ £ 
* ± y2 dx 

, ik mm _ x . y ... . . 
= ± -s -ßn cos W77 - sin ηπ τ e±licz-l(x>t, 

rln a a b 

Ey = ±^-^E0 sin mir - cos ηπ | <»±<**-<ω«, (33.75) 
' ran 

£* = "F ^6 ^ ^ > 

-By = ±μ*-^Εχ. 

The T E modes in the rectangular guide are found by setting 2?e 
equal to zero and solving the eigenvalue problem 

id2 d2 \ 

(33.76) 
—z-2- = 0 on the boundary. dn 

This problem is also easily solved by assuming a solution of the form 

Bz(x, t) = X(x) Y{y) β±***-*<»\ (33.77) 

so that the differential equation becomes 

-Ç + Ç + / = 0. (33.78) 
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Now X"\X must be a constant, say — a2, and the solution of the equation 

X" + oc*X = 0 (33.79) 

has to be taken to be 

X(x) = A cos oc xy (33.80) 

since the boundary conditions require dBz\dx to vanish when x is zero. 
To obtain dBJdx to vanish ät x = a as well, one must have 

oca = mn\ m = 0, 1, 2,... . (33.81) 

There is one qualitative difference between T M and TE modes: The 
integers specifying the number of half wavelengths of the radiation in 
the guide in the X- and Y-directions may be zero in the latter case. 
The m — 0 possibility leads, in Eq. (33.80), to a constant for X(x) and 
is acceptable for the Neumann boundary conditions. The same develop­
ment applies to Y(y) and so the eigenvalue problem is solved by 

Bz = Ba cos τηπ- cos ηττ -ζ e
±ikz-iu)\ 2 ° a b 

(33.82) 
2 { ηττ \2 ι mn \2 _ t _ 

ymn = [—£-J + (——J ; m, w = 0, 1 2,... . 

However one must reconsider whether both m and n being zero at 
the same time is an acceptable solution because this leads to y = 0. 
In the general development the equations were divided by ymn in several 
places, so the solution will not necessarily apply. One must reconsider 
the problem almost from the beginning with (/xeo>2/c2) — k2 = 0. The 
derivation will not be given here, but the result is that there is no 
solution with (μ,βω2/^2) — k2 = 0 in a waveguide problem if the cross 
section of the guide is simply connected. If the guide is not simply 
connected (for example, a coaxial cable is not), then there is a T E M 
mode. For this mode, both the electric and magnetic fields are transverse, 
and the T E M mode has no cutoff. It is the only propagating mode at 
low frequency in such a guide. Indeed a guide which is not simply 
connected can be thought of as possessing a return path for waves at 
zero frequency, that is, direct current. 

In the rectangular guide the possible modes are TEm 0 , TE 0 n , T E w n , 
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and T M m n , where m and n range over the positive integers. The 
dispersion rule is 

o r 

/ rmr \ 2 / ηπ \ 2 

= ΓΤ7 + IT/ ' 
When a is greater than è, the lowest cutoff frequency is in the TE1 0 
mode with y = π/α. Since the TE1 0 mode enters into a subsequent 
discussion of the lowest resonance of a rectangular cavity, explicit 
formulas for the fields in this mode will be given. For this mode one has 

S = ^ - * 2 . (33-83) 

and the fields are, from Eqs. (33.82) and (33.66), 

Bx = 

Bx = 

By = 

Ex 

Ey 

= B0 cos 77 -

-T^B0: 
77 

= 0, 

= 0, 

-*%»■ 

ß±ikz-

sin 77 

-iü)t 

X 
- e~ 
a 

(33.84) 

= — £0sin77-é>±^-^. ire a 

The Rectangular Resonant Cavity with Only TE1 0 above Cutoff 

At sufficiently low frequency only the TE1 0 mode propagates in the 
rectangular waveguide. Consider this case so there will be only one mode 
to keep in mind. One can consider walling up the waveguide with 
conducting planes at z = 0 and z = d to make a resonant cavity as 
shown in Fig. 33.6. In this situation, the traveling wave solutions with 
#-dependence e±ikz can be combined so as to make Bz and Ey vanish 
at the ends of the cavity. This satisfies all necessary boundary conditions 
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FIG, 33.6. The rectangular resonant cavity. 

since Ex is zero in the TE1 0 mode of the rectangular guide. In fact 
the difference of the two oppositely propagating solutions divided by 
il is the required form and the nonvanishing fields are 

Br = Bn cos : 
a 

. kz ( 

Bx = B0 sin 77 - cos kz e~iwt, 
7Γ a 

(33.85) 

_, . ωα x . j . . tv = ι Be, sin π - sin kz e~la)t. ire a 

To allow Bz and Ey to vanish at z = 0 and z = d, one must have 

kd = 77/>; p = 1,2,3,.... (33.86) 

The case p = 0 gives the trivial solution with all fields vanishing 
everywhere. For p = 1 in Eq. (33.86), one has k = π/d and the vibration 
can occur only at the special frequency given by 

Ϊ = ^ ~ 
77ώ 

(33.87) 

vt μ€ ν^ 2 + d* 
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This is the lowest resonance of the rectangular cavity. The nonzero 
fields in this case are 

B~ = Ba cos 7Γ - sin π - e~iü)t, 
a a 

Bx= ~ -,Β0 sin 77- - cos 7Γ -3 e~^\ (33.88) 
d a d 

A« = ί £?η sin 7Γ - sin 7Γ - e~la)t. 
y ire " ß tf 

This is just a special case; there are many resonant modes for various 
values of m> n, and p. 

The losses that occur in the walls of the cavity may be discussed in 
terms of the quality factor Q which is defined by 

o=2n( e n e , ; g y s t o r e d , ) 
V energy lost per cycle / 
/ energy stored y 
Vaverage power loss/ 

The energy referred to here is the free energy of the fields in the cavity, 
and ω0 is the natural frequency of the system. We will consider the 
typical case in which the losses in a cycle are small compared to the 
stored energy and in which Q has a numerical value which is independent 
of the amplitude of the vibration. The Q of the resonant cavity will be 
calculated for the lowest resonant frequency as an example but first 
there are some general remarks to be made: Let U be the energy present 
in the field. Since there are losses, this decreases slowly and must be a 
function of time U(t). There is a range of frequencies around ω0 
introduced into the system by the losses. Since the quality factor is 
given in terms of U(t) and the power loss, which is just —dU(t)/dt, 
one has 

dU _ 
dt ~ 

U = 

- $ » . 

U0e o . 

(-TT) 
(33.90) 
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Thus Q/OJQ is the time constant for the excitation in the cavity. The fields 
inside do not have a pure sinusoidal time-dependence because of the 
exponential damping. Any one of the fields at a point inside the cavity 
has a time-dependence something like 

JO, *<0, 
E0e 2Q cos œ0ty t > 0 

E{t)= { _»>lt (33.91) 

in the situation where the mode is excited in the cavity at t = 0 and 
then allowed to decay freely. One can make a Fourier analysis of this 
field to see the range of frequencies which are present in it (this calcula­
tion was done in solving Problem 5, Section 31); the result is shown in 
Fig. 33.7. The full width at half-maximum in the square of the amplitude 
of the Fourier transform is Δω = œJQ. 

One needs to make use of the explicit fields of a particular mode to 
calculate the quality factor. For the standing TE1 0 mode with fields 
given by Eqs. (33.88), the stored energy in the cavity is 

U = r j - L· d*x [eE · E* + — B · B*l 
1Ó7T J (*) L μ J 

1 f ι · ΐ Γ / ω ο \ 2 η 2 · 2 X · 2 # , 1 Τ Ϊ 2 2 X · 2 Z 

= ττ^- _ a x e Bn sin π - sin π -. -\ Bn cos π - sin π -
1Ô7T J ® L \ Tre J υ a d μ υ a a 

i * z?2 la\2 - 2 * 2 ζλ + JB°\d) S m 7 r â C O S 7 r ï J 

-Ε<τ(, + τ)· ( 3 3 · 9 2 ) 

The spatial integrals are easily performed. For example, the average 
value of sin2 πχ/α is \ and the range of its integration is from 0 to a 
so this factor contributes \a. The resonant frequency, where this 
calculation applies, satisfies (αω/επ)2 = (1 + #2/</2)//ze. To obtain the 
average power loss, one supposes that the metal has permeability /xc and 
applies Eq. (33.26) 

dp _ / W H i .H* ( 3 3 9 3 ) 
da 16 
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3 
ki 

ikK)i2 l · 

FIG* 33*7. Amplitude of the Fourier transform of an exponentially damped sinusoidal wave. 

where δ, the skin depth in the metal, is εΙ\/2πσω0μ0 . The amounts 
absorbed by opposite faces in the cavity are equal so 

P = 1677^2 jdaBt B 

= tfl\2 fdx Ç dy\Bx\A +2 fdx \ddz(\Bx\* + \B,\*j\ 

+ 2 Çdy f dz\BAi\ |, 
a\2 ad , ad 

0 [ © - + © T + T + H«! \6πμ· 

μΰω08 Κ'+δ© +4+DR 167TjLt2 

Thus the quality factor £) = ωου/Ρ is 

(33.94) 

0 = ^ n 2 ^ / l , _^_\ 167Γ/Χ2 1 

/xc 2δ ['('+9©+'('+91 
(33.95) 
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for this particular mode of the rectangular cavity. There is a conventional 
way of writing the quality factor for a cavity. Since the area of the walls 
is A = 2(ab + bd -\- ad) and the volume is V = abd, if one defines a 
dimensionless function of a> b, and d by 

G = (l + · £ ) q + y + " ' " , (33.96) 

then the £) of the cavity becomes 

V = ilŒG- <3 3 · 9 7> 
This is appropriate because G specifies the dependence of Q on the 
shape of the cavity. Otherwise the quality factor depends on the ratio 
of permeabilities μ/μ0 and on V/A8> which is essentially the ratio of 
the volume in which the field energy is conserved to that in which 
power is lost to joule heating. The shape factor G is quoted in handbooks 
for various practical geometries. 

P R O B L E M 

1* (a) Find the general solution for Ez in the case of T M waves 
propagating in a guide constructed with walls which are good 
conductors when the cross section is a quadrant of a circle of radius a. 
Take e = 1 and μ = 1 inside the guide. 
(b) Calculate the lowest frequency that can be propagated in a 
T M mode in this guide when the radius of the quadrant is 5 cm. 
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